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52 1. Introduetion M'Hn’.i N, b .: iL:o {;u.

It is plausible that, if £(x,y) 20 for all x and y, every.

solution of

x.+ 2(x, %)% + g(x) = p(t) | | | (1.1)

- will be bounded, this suggestion being" su'B:)ect to 'th_e"provviso‘ that the

N65

equation X + g(x) = p(t) should be (in scme sense) clearly different from
a linear differential equation exhibitir_)é res_'oﬁa.nce. We might indee& expect
that if £( x,y) >0 ir a considerable part of the plane every solution of

(1.1) will eventually satisfy [x(t)| + |%(t)] < B. ﬁhere B 1is an absolute

constant,

In this note I construct an equation of the form (l.l) , 85 near as

desired td the equation

X +x=-8sin 3, - E . (1.2)

vhich has a one-parameter family of unbounded solutions.
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Proof of Theorem 2. Suppose x(t) 4s the solution of (k.1l) with

%(0) = 3 and x(0) = A, A bYeing large, and write B = x(p), where '@
is the smallest positive t making %X(t) = 0. Write x'(t) for the
solution of (4.3) with x*(g) =B, %'(p) =0 and write t(y, g, B) and
t'(y, B, B) for the functions inverse to y(t) = 2(t) and y'(t) = x*(t)
respectively. Since, evidently; B=A+0(1) and g = _Q(A"l) the

hypotheses of Lemma 8 are satisfied. We have therefore
0 = t(3, p, B) >t%(3, 8, B)

except when (4.5) holds., that is, in terms of the original functions,

£1(0) < 3 except when f£(x(t), X(t)) =0Q for 0=t sp.

In the exceptional case x(t) = x'(t) for all t, and hence
2(x(t), x(t)) =0 for 0 st sp if and only if this holds for all t.

When t'(3, B, E) <0, write -5 for its value, Evidently x'(t)
has period 2om, and, since for P S t S 2r - & we have x(t) = x'(t),. we

obtain
22w - 8) = %1(2r - 8) = £%(-8) = 3,

which at once gives %X(27) < 3

—_ [ . . e s e g
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THEOREM 1. It is possidble so to define the contiruous functions

£f(x,y), positive in the half-strip x > x*, 0<y<3 acd zero elsevhere,

and g(x), ecual to x in |x] 21, that every solution of

X + £2(x, %)% + g(x) = -8 sin 3t

with x(0) large and X(0) = 3 has |x(t)]| + |X(t)] » «. Further, for

every small positive e it 1s possible to define such functions f(x,y) _

and g(x) with the additional properties that

0= £(x,y) <e _and |x - g(x)] <e>

for all x,Yy.

We shall proceed by modimhg (‘1.2). Cleaxly'a.ny solution of this
linear equation can be writtea &s x = R cos (t - ) +sin 3t, which is to

say that any solution of the systenm
=y, §¥=-x-8sin 3
can be written

R cos (t - B) + sin 3t,

»
]

& R sin (t - g) + 3 cos 3t.

Having this explicit form for solution cui-ves in (x, Y, t)-space, we can

easily (arnd in more than one way) determine tubes on which they lie; we shall

(1.3)




need the particular result that any solution curve remains on & tube
(x - sin 31:)2 + (y ~ 3 cos 3t)2 = K . (1.%)

Although it is tempting to say that (in whatever sense may be relevant

to our work) such a tube will be "near enough" to a circular cylinder
having 'the t-axis as éxis of symﬁetry, it will appear from our calculations
that the'directiions of normals to tubes and cylinders are not near enough
for us to deduce the boundedness of solutions of (1.1). | This clash between
a pla.usib'le guess and exact knowledge may serve to explain in a geometrical

way why the plausible suggestion for (1.1l) is false.

.

The unit imward normal to the tube (1.4) is a positive multiple of
N = (-(x - sin 3t), -(y - 3cos 3t), 3 cos 3t - 9y sin 3t + 12 sin 6t),

and we can assert that a vector y at (x,y,t) points out of the tube if
Ne y<O0, In particular the vector (x,¥,1) corresponding to the modified

system
$=y, §=-x- fy-8sin3 | (1.5)
points out of the tube when

fy (y - 3 cos 3t)<0.>
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When t =0, 2m, Yr, ... this condition is satisfied in 0 <y < 3
for any choice of positive f. This suggests that, for some positive xx,
we should try to determine f£(x,y), positive in x >x*, 0<y< 3, in
such a way that any solution curve of (1.5) which had x large and
y=3 for t=0 would next have y = 3 and x positive when t = 27,
However, as we shall show in §4 (as Theorem 2), such & determination is not
possible; we, therefore, arrange that y = 3 successively at t =0,
2w, WT, ... by changing x into a cubic polynomial for |x| £ 1, a pro-

cedure which unfortunately leads us into some calculations,
2. Estimates for special equations

We shall first show how to determine an h(x,y) having all the
properties asserted of £ except continuity on the boundaries of the half-strip.
Since the signs of coefficients are important in the discussion we need to
give the calculations in some detail; it will be convenient to set them out

as a string of lemmas concerning the equation (1.2) and its two perturbations

X+ +x=-8sin 3t | (2.1)

%+x+p(x> - x) = -8sin %, | (2.2)

where )\ and p are parameters, It is to be observed that although they have

notation in common, the lemmas are inaependent of one another. Finally we
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show that our h(x,y) can be modified to give a contimuocus £(x,y).

All our variables and parameters are real. We shall specify
the largeness of our solutions by using parameters Ai’ and shall allow

ourselves the license of saying that a function which admits an expansion

[}
-n
A, + Z c_ A,
i n={)ni

convergent for A, >q, 1is analﬂic in A;]' for large Ai' We shall
consistently assert .the analytic dependence of the solutions of our differential _
eéuatiOns on the parameters and iﬁtiﬂ values, We make no deep use of

this analyticity, and indeed could neglect it at the price of calculating
additional error terms; we shall exploit it in the proof of Theorem 1 s?

as to speak unambiguously of "the terms free of A and " in -<p6(A, M) e

Although the geometrical point of view motivates our construction we
shall not appeal to. it explicitly in the calculat-ions but instead estimate the
change of the non-negative function Ra(x,y,t) defined by (1.4). When
we are working with a function x(t), we shall abbreviate

R2(x(t), y(t), t} to Re(t) without special mention.

LEMMA 1. Suppose A, is large and 2] smell, and let

P = q;l(Ao,x) be the least positive t such that the solution of (2.1) with

x(0) = A, %(0) = 3 has %(t) =0. Then ¢ and x(q;l) are analytic in
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Kt s,
¢ =0 (&Y,
(@) =4, +0 (a7h),
a(an) = 98,0 - 222 + 0 (A]a?)
and

K(g) - B(0) = oM + o(ah) .-

Replace (2.1) by the system

=y, ¥y=-x-2 -8sin 3,

write x = A oZ and change to y as independent varia.blé, obtaining

-1
a__ A
dy z + My + 8 .A;l sin 3t
-2
gz Do¥
dy °~ *

z + m;ly +8 A;l sin 3t

1

The analytic dependence on A; and A of the solution having t =0

z=1 for y=3 1s now clear, Further,

d '[at;[ -1 dz/an + A;ly + 2k A;]' cos 3t « 3t/
—1 = A N
| b ° (z + xA;ly + 8 A;l sin 3t)

(2.3

(2.4)

end

(2.5)




If the maximum of |3t/OA] in O £y S 3 1is attained where y = y*, we

see, by integrating between 3 and y*, that

3t '-1{ 3z 1 a3}
maxlaisaAo max| |+ 37T + 2k A] mléilf
= 2A;]’ M, say.

Since, similarly, max|dz/dx] 5 6A;2 M we obtain
. g2 -1 -2
MS 6A°M+ 3, + 18N,

which gives M =0 (A;]') and then Jt/d) =0 (Af), dz/ =0 (A?). We
may now deduce from (2.5) that '

39, > 3t
S =f; Sy (5_5.) dy

- PRy o (e

"

9 ,-2 -1
-Za° L1+0(a)),

which implies (2.3). The estimate of x( cpl) is irmediate and since

-1
a (Ra) ) 2)MA y(y - 3 cos 3t)
dy 1

- -1 .
‘ z+m°y+8Ao sin 3t

oy (y-3+0 (3 (2 +0 (a2h)

]

<1, 2 -2
2z, (y" - 3) +0 (Mo )s

;n integration gives R2( q’i) - R2(0).
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IEMMA 2. Suppose Al is large and let % be the least ¢

exceeding @ such that the solution of (1.2) with x( @) = A, k(qi) =0

nes x(t) = 1, _Then @, and :':(qé) ere analytic in A.Il and @,

G- =T o0

#(q,) = -a) +0(1) .

 LEMMA 3. Suppose A, is lerge end |n] small, and let )

95 = <p5( Ay, b, cp2) be the least t exceeding q, such that the solution

of (2.2) with (q,) =1, Hq,) = -A, hes x(t),=-1; Then ¢, 2nd

*( cp3) are analytic in A'2'1, p and oy

9= % +9._(A;l) ’
oy = -4, +0 (85,

ofhr 1y B) = 0fhy Oy @) *E A7+ 0 (W) (2.6)

R( 5 - 2(:92) =- %h' p sin 3<p2A;2 +0 (lplAg). (2.

it o i e 2o =

st

b s, S i S a i e A,




In the interval -1 xS 1 we have the approximate first integrai

Lot =240 ()

whence we obtain our estimates for <p5 and 3((@5).

The asserted analytic behaviour is evident when we write X =y = ~A v

and replace the given equation by the system

p,'
ot

1
dx"Aaw’

S AR ua® - x) + B etn ) .
Wehav.efurther

3 ¢33t -1 _-2 Jw

&(&)‘% Vo

(%LW) = Aéa w"2 {x + p(x3 -x) +8 s.in 3t} %:w -

%/IO/

G //JEV A &7 i 1 ot
R . P R - S -2 -1
é,;{_ AL ,4’,,L l/_‘,;,\,;,v/,‘/’v:,: | -A2 w (x3 - X) - 24 A2 ‘w cos 3t '5; ’

and by working much as in Lemma 1 we obtain as a first estimate that

¥/ = (A7) end 3t/ = o(47)

in .l € xS 1, The approximate equations -

f
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2 =t Ero ),

I 1 R e G R Y P
cé.n novw be solved to give
FaG - F i -5 e,
which leads to (2.6) when we put x = -l

Finally, we have

ﬂ!ﬁa_gﬂ(lé-x)(y-Bcos 3t)
dx y

=-2p(x3-x)+6u-(x5-X) cos 3t .y,

To find R (<p3) - R (qh) we must integrate this from +1 to -1 .gnd only

even powers of X will contribute to the integral, In the range we have

cos 31-;=cos3<p2+3s1n'3q>2. (x-‘l) -A2 +0(A2

- -~

we see that
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K(op) - Flgy) = - 6 [5 (= - x)x 3 81n 3, - A%ax + o [uli5D)
=- ‘E‘E i sin 3q, Aga '*'_Q(IPIA;B)-:

IEMMA 4, Suppose A, 1is large and let @, be the least ¢

3
exceeding @, _such that the solution of (1.2) with x( ?5) = -1, %( 95 = -A

3
has x(t) = -1. Then ¢, .and x( qh) are apnalytic in A;_l and Pz

o) =a;+0(1)

| L
9 - % =T+ 0 (450,

. LEMMA 5. Suppose A, ,.leeat_.rsé_arg |u] small, and et % =% (A4,1,9,)

be the least t exceeding @), such that the solution of (2.2)

with x(q) =-1, *(q) =4, Dbas x(t) =+l Then 9, &nd :'c(<p5) are

analytic in Ail, b oand @,
3.!(‘115) = Ah‘ + ..O.(A;l):
%(Ah’ B, %) = .%(Au: 0, %) +L{5I-1A;3 +9.(|PIA1-;5)

R2(<n)_) - 32( %) = g_.l‘ p sin 3%1\12 + _(_)_(]glAi;B)'. . | (2.8)




Evidently we need only change x and t of Iemma 2 into x' and

t%, and then write x =-x', t =t +7,

1EMMA 6. Suppose A5 is large and let @ be the least ¢

exceeding @ such that the solution of (1.2) with x( %) =1, X( q;j) = A

has %(t) = 3. Then ¢ 1is anmalytic in A;l and qs.'
3. Proof of Theorem 1

As was foreshadowed by the notation in the lemmas, we consider a
function 'which, in successive zintervals of t, satisfies the equations
(2.1), (1.2), (2.2), (1.2), (2.2), (1.2):. more precisely, we consider
x(t) with x(0) = A, %(0) = 3 satisfying (2.1) in 0 st s P (1.2) in
® 5tsq andsoon. ‘When we suppose A, largé and use A, = x(cpl), -
A, = %( ®,) etc., we combine the results of the lemmas, carrying A and
W as parameters. It is clear that, for all i, A, = A, +0(1), and
indeed that this holds uniformly in A, p if, say, |A| S 1, Ju| S 1. We
suppose all error terms expressed in terms of Ao’ and from now oh drop the

subscripts.

For sufficiently small |A], || and sufficiently large A, we see
that g, = qlA, X 1) say, is analytic in A'l, A B and can be expanded
as a multiple power series. The terms free of ) a.nd B have the sum. .
_ng(A,' 0, 0) which mist be p:éc‘:ifely o7 since vhen \ = = 0 the three

equgt;og's’coa;gsqe into (132) ,all ©of whose solutions have period 2:r. Hence
I -2, 8 | -
%(A:.&P)=2ﬂ’-%u l5uA3+0(x +n) (31)

- ——— T LI T, e e e

U
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and for sufficiently small |A»] and |[u| we can solve the equation
<p6(A, A, u). = 2r to obtain A\ as a series beginning

A= pA‘l+

1%

' We write ).(p., A) for the sum of this series; it is essential to observe

- that A(u, A) and p have the same sign for small |u| and large A.

It is clear that there exist u* and A%, both positive, such that,
for O<p s u* and A 2 A¥,  the series (3.2) is convergent and its

sum positive and further that, when A 1s taken equal to A(m, A),

(1) Ra( q>l) - R2(0) for which we‘ha.ve the estimate (2.4), is

positive,

(11) sin 3 @, = sin 3 /2 + Q_(A'l) 1s negative and sin 3 q =

sin 9 7/2 + _Q(A‘l) is positive, and

(111) Bz( q>3) - R2( qb) and R2( %) - Rz( q3+) , for which we have the
estimates (2.7) and (2.8), are greater than hp.A'a. Corresponding to any

U in O0<p S p*¥ we define gu(x) by

rx o+ (- x) for |x| =1,
g (x). = '
H x - for |x| >1.

Evidently ]g“(x) -x] <p forall x.

. Y
We now proceed to define an h“(x, ¥Y)e For A > A%, take X = A, A)

in (2.1) and consider the solution with x(0) = A, %X(0) = 3, If we write

S U S S i A ety e e

B R T T s



=

x(t, A) for this solution it 18 a consequence of ocur definitions that

%(2 m, A) = 3. We now show that, as A varies (and A with it, p
remaining fixed), the plame curves x = x(t, A), y = %(t, A) cover a right-
hand half-strip of O S y £ 3, In fact, vhen x and Yy are glven we need
to £ind large A and small t such that

x=Acos t + sin 3t + I(-At cos ¢ +-E cos 3t -“E cos t) + ...,

| | (3.3)
y=-Asint + 3cos t +%x(-A cos t + At sin © -'% sin 3t +-£sint) + .Q.f’.

For our purposes we need only note that (3.3) imply

x=a+0(1), y=-at+3+0(at) - (3

and that we can throw (3.4) into the form

e ateon®), (3.t =1+t

to which the standa.rd implicit function theorem can at once be applied to give

At ana t, at least for x > x* = x¥(u) say. We shall defipe h“(x,'y)

to have the constant value )\ on any such curve lying sufficiently far to the -

right in the strip, that is, we shall choose x¥ = x*(p.) z x¥ to satisfy

a subsidiary condition and then, for each x and y with x 2 x* and
0sys 3 determine A to satisfy (3.3) and write B (%) = Mu, A). For
(x,y) outside this half-strip we define h“(x,y) = 0. However x* is

chosen, we evidently have
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hu(x,y) ~ %—% n A‘l ~ igb pxt

as x ->6o, uniformly for O S y § 3; our condition on x* 4s that it

should be so chosen that hu(x,y) <p for all x,y.

‘Glven a positive ¢, choose & u <min (e,u*), take h, eod g
for £ end g in (1.3), and consider the change of Rz(t) for a solution
with x(O) = A > x* a.nd X(0) = 3. In the range 0 to ¢ K (t) increases,
it is constant in the ranges <pl to @, cp3 to @, @nd % to P ~and |
1t increases, in each.of @, to Ps and @ to %’ ﬁy ll-p.A. at least,

. whence ,' ’ ‘ ’ . o~

2(21r) - R (o) > 8uA™2 = 8y [x(o))‘a;
Since X(27) = 3 we obtain similarly

R(4r) - R(2m) > 8 {x(2:r)]'2,

~ and by repeating this we see that R (t) - o,

Finally we must show that we can modify h (x,y) to a contimious

fu(x,y). If ve write

Yy, 0sys),
C(y,l) = X, lsys 3—).,
3y, >>\3y=s3

then ¢ .i8 continuous for 0 Sy s 3, 0 S A S 1, and the equation
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X+ &Nk +x = -8 sin 3 | - (3.5)

is a m§d.1fication of (2.1) which is identical with (2.1) 4n A Sy & 3.
When A, 1s large and ) small apd positive, write q;lc(Ao,x) for the
least positive ¢ sqcﬁ that the solution of (3.5) with x(0) = A,

%(0) = 3 has %(t) = 0. Then just as fOr @ inlema 1, ¢ 1s smslytic,
and with the accui'acy given in (2,3) and (2.4) these estimates are valid .
vhen @ 1s vritten for . To verify this 1s tedious but straightforvard,
and we may suppress the proof since it is clear on general grouxida of»contin-_'-'
uity that some modification of (g.1) ‘must have these properties. I.ennnas .

2 and 6 are unaffected by the modification and we can combine the results of
our lemmas as above. If we modify our previous notations by inserting a sube
seript ¢, we obtain the estimate (3.1) for %C(A, A, #), then ( 3.,2) for

)\.c_( B, A) and so on until we have been led to define x{cé qc(u)..

~

Mich as before, 1% 1s possible to choose x% = xf, 80 that hpc(x,y)
defined in ttre following mamner should have huc(x,y) <p: glven x and

y with xzx% and OSy s 3 determine A %o satisfy (3.3) and write

Y for 0sys(nA),
n“c'(x; y)_ = ).c(p.,.A) for xc(p,.A) Sys3- 1c(p., A),

3-3 for 3~ (u, A) Sys3
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and B (x,3) =0 outside this half-strip. Evidently b (x, y) 1s

continuous except when Xx = Sc:, 0= ys= 3 If we now write

| (x-xz)huc(x:-fl,y) In xtsxsxx+1,0s5y% 3
fu(x’y) = A
huc(x, y) elsevhere,

we have a continuocus functionm, Given a positive ¢ choose a p < min( ¢, u:)
and take £, end gu ‘for £ and g in (1. 5) Our previous argument
can now be repeated to show that, for a.ny solution with x*(O) s A > x* +1

and %(0) = 3, the corresponding R (t) tends to infinity,
"4, The Need to Introduce g(x)

In order to state a precise form of the assertion at the end of.§1

we suppose f(x, y) i1s a given function which

(1) is continuous and non-negative inside x = x* >0, 0 Sy s 3,
and is O outside, and | |

(11) 1s such that the solutions of

| v + #(x, ¥k + x = -8 sin 3t

are uniquely determined by initial values,

(4. 1)

When (1) and (11) hold we shall say f satisfies condition C; with this tern~

Bl

inology our result 18

THEOREM 2. If f satisfies condition C . then, except in the case

when f£(x(t), %(t)) =0 for all %, a solution of (k.1) with x{(0) large and |

2(0) = 3 has Xam) < 3 :




-18.

Tt will be observed that we have not prescribed that f£(x, y)
is to be continuous on the boundaries of the half-strip. Tt will be
clear that at the price of some complications in our enunciations and

proofs we could also allow discontinuities inside the half-strip.
(' ) .

» In a range of t in vhich x(t), a solution of (4.,1), 1is large
we see that y(t) 1s decreasing and that .
das 1 -

at : ax _, , 4t ' | (k.2)
&y T xX+fx, y)y+8sin%’ da Y T °. <)

Here t(y) 1s the function inverse to y(t) and x(y) 1is an abbreviation
for x(t(y)); evidently vhen f£ satisfies condition C we can assert the
uniqueness of solutions of (h.a). Similarly we can replace the comparison

equa.tion .
% + x! = -8 sin 3t ’ (3.3

(in which, as throughout this paper, primes are used only as labels) by

at? 1 axt _ . att

& T X F8sunm’ &y T F (%Y

vhere t'(y) d4s inverse to y*(t) ard x*(y) is written for x*(t*(y)).

IEMMA T. Suppose that £(x, y) satisfies condition C and that

(.t(y),'.x(_a_r')“) 18 a solution of (4.2) and (t3(y), x'(y)) a solution of (k.k)

such that




e —,
- T

IR eyt 1o

(1) x(y) >8 and x'(y) >8 for 0Sys 3 and

(11) - %‘E<t(y)< gT ana -%v<t'(y)<%‘n’ for 05ys 3

If, further, there is an n with O S n < 3 such that

t(n) = t*(y),
2(x(q), 7) 1 20,

and | x(n) 2 x*(n)

g

with at least one inequality, then t(y) >t*(y) and x(y) >=x¥(y) for

The hypothesis (1) guarantees that the denominators in

a(t-tt) _ (x-xt) + f(x, y)y + 8 (sin 3t - sin 3t')
T dy (x + £(x, y)y + 8 sin 3t} (x* + 8 sin 3tY)

d(x - x?) . .-dgt-t')
Ca

are positive, and the hypothesis (11) thet sin 3t > sin 3t' when and only

when t >t'. When ¥ = n, the numerstor of d(t - t?)/dy is positive; -according

as >0 or e=sewz®a n =0 the numerator of a(x - x')/iv is positive

Or Zero. In either case there is an interval to the right of y =1 in vwhich

both t(y) - t'(y) and x(y) - x'(y) 1increase, and are therefore positive.



v

1 sy v g s 42T 40 S
)

This interval must extend to y = 3 since otherwise we should have at

least one of t(y) - t'(y) anmd x(y) - x*(y) attaining a maximum where

its derivative was positive,

IEMMA 8. Suppose that f(x,y) satisfies condition C, that B

» N <
is large and thet 0<p<3m It (t(y, s, B), x(y, B, B)) snd

(t*(y, B, B), x'(y, B, B)) are the solutions of (%.2) and (k4.4) respectively

with t =t =8 and x=x* =B where y =0, then

(3, 8, B) = t'(3, p, B)

with equality if and only if

#(x(y, B, B), ¥Y) =0 for 0sys 3 : (h.j)

£ (4.5) holds, then (y, B, B) =t*(y, p, B) for 0sys 3 and
in particular for y = 3. If (h.5).' does not hold there 1s a Y, with
0<y,<3 such that '

.f(x(}'o.v 5:_ B), _Yo) >0. L ' ' (4.6)

reke t(y, g, B) and x(y, B, B) as the »t(y) and x(y) of Lemma
T. If ¢ 1is small and positive tai:e t*(y, g, B -¢) and x'(y, B, B - €)
as the t'(y) and x'(y) of Lema T. .When B 1s large these four functioms
decrease slowly from their initial values and hence satisfy (1) and (i1) of .

Lemma T. Since



t(0) = p = ¢1(0)

x{0). = B> B - ¢ = x*(0),

all the hypotheses of Lemma T are satisfied with 'q'= O. Hence, for
0<ys3

t(y, B, B) >t'(y, B, B =~ ¢)
x(Y: B, B) > x'(yJ By B = €)e

let ¢ tenﬂ to 0, and then write y = Y3 Ve obtain

t(YO) B B) H t'(yo) B, B)

x(}'oa B, B) z x'(yo, By B).

Our result now follows from these a;nd (1&.6) by a further application of Lemma T. .



